Scientists develop novel high-energy-density lithium metal battery


Prof. Liu Zhaoping's team at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) has developed an electrolyte engineering strategy for lithium (Li) metal batteries and thus realized pouch cells with a high energy density of 430 Wh/kg and extended lifespan. The study was published in ACS Energy Letters.  

Pursuing next-generation lithium batteries with a high energy density especially beyond 500 Wh kg-1 has become a global research hotspot. However, the unstable interface between the anode or cathode and the electrolyte under a high voltage limits the energy density promotion. 

As the electrolyte is the only shared component for both the cathode and anode, electrolyte engineering thus becomes a common and facile strategy to stabilize the electrode/electrolyte interface on both a cathode and an anode simultaneously.  

Researchers at NIMTE selected the fluoroether as the electron-withdrawing solvent, and add it into the carbonate-based electrolyte (1.0 M LiPF6 in EC/DMC with 2% wt. LiPO2F2) to weaken the aligned Li+-carbonyl interaction, thus to disturb the balance of Li+-(EC)4 solvation sheath.

To read the full article, click here.