Scientists apply 'twistronics' to light propagation and make a breakthrough discovery

news
15/06/2020

Promising pathway for leapfrog advancement in imaging, optical-computing technologies, biosensing and more.

A research team led by scientists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC), in collaboration with National University of Singapore, University of Texas at Austin and Monash University, has employed "twistronics" concepts (the science of layering and twisting two-dimensional materials to control their electrical properties) to manipulate the flow of light in extreme ways.

The findings, published in the journal Nature, hold the promise for leapfrog advances in a variety of light-driven technologies, including nano-imaging devices; high-speed, low-energy optical computers; and biosensors.

The team took inspiration from the recent discovery of superconductivity in a pair of stacked graphene layers that were rotated to the "magic twist angle" of 1.1 degrees. In this configuration, electrons flow with no resistance.

Separately, each graphene layer shows no special electrical properties. The discovery has shown how the careful control of rotational symmetries can unveil unexpected material responses.

The research team discovered that an analogous principle can be applied to manipulate light in highly unusual ways. At a specific rotation angle between two ultrathin layers of molybdenum trioxide, the researchers were able to prevent optical diffraction and enable robust light propagation in a tightly focused beam at desired wavelengths.

To read the full article, click here.